Treatment and management of tinnitus include talk therapy, the use of sound generators, hearing aids, tinnitus counseling, cognitive behavioral therapy, and tinnitus retraining therapy. As of 2013, there is no known effective medication. Most patients are able to tolerate the ringing well, but approximately 1 to 2 percent of patients are significantly impaired by it.
Temporomandibular joint (TMJ) syndrome is a disorder that causes symptoms like pain, clicking, and popping of the jaw. TMJ is caused by injury to the temporomandibular joint. Stress, poor posture, jaw trauma, genetic predisposition, and inflammatory disorders are risk factors for the condition. A variety of self-care measures (application of ice, use of over-the-counter pain medication, massage, relaxation techniques) and medical treatment options (dental splint, Botox, prescription medications, surgery) are available to manage TMJ. The prognosis of TMJ is good with proper treatment.
Prolonged exposure to loud sound or noise levels can lead to tinnitus.[74] Ear plugs or other measures can help with prevention. Employers may use hearing loss prevention programs to help educate and prevent dangerous levels of exposure to noise. Groups like NIOSH and OSHA help set regulations to ensure employees, if following the protocol, should have minimal risk to permanent damage to their hearing.[75]
A case history (usually a written form, with questionnaire) can provide valuable information about the context of the hearing loss, and indicate what kind of diagnostic procedures to employ. Examinations include otoscopy, tympanometry, and differential testing with the Weber, Rinne, Bing and Schwabach tests. In case of infection or inflammation, blood or other body fluids may be submitted for laboratory analysis. MRI and CT scans can be useful to identify the pathology of many causes of hearing loss.
Fetal alcohol spectrum disorders are reported to cause hearing loss in up to 64% of infants born to alcoholic mothers, from the ototoxic effect on the developing fetus plus malnutrition during pregnancy from the excess alcohol intake. Premature birth can be associated with sensorineural hearing loss because of an increased risk of hypoxia, hyperbilirubinaemia, ototoxic medication and infection as well as noise exposure in the neonatal units. Also, hearing loss in premature babies is often discovered far later than a similar hearing loss would be in a full-term baby because normally babies are given a hearing test within 48 hours of birth, but doctors must wait until the premature baby is medically stable before testing hearing, which can be months after birth. [56]The risk of hearing loss is greatest for those weighing less than 1500 g at birth.
Conductive hearing loss results when there is any problem in delivering sound energy to your cochlea, the hearing part in the inner ear. Common reasons for conductive hearing loss include blockage of your ear canal, a hole in your ear drum, problems with three small bones in your ear, or fluid in the space between your ear drum and cochlea. Fortunately, most cases of conductive hearing loss can be improved.
Acoustic shock is an involuntary response to a sound perceived as traumatic (acoustic incident), which causes a specific and consistent pattern of neurophysiological and psychological symptoms (1).  The degree of trauma is influenced by the psychological context of the workplace and/or environment where the acoustic incident exposure occurred. Acoustic shock symptoms are usually temporary, but for some the symptoms can be persistent, escalate and result in a permanent disability. The term acoustic shock disorder (ASD) is used to identify this persistent symptom cluster.
Identification of a hearing loss is usually conducted by a general practitioner medical doctor, otolaryngologist, certified and licensed audiologist, school or industrial audiometrist, or other audiometric technician. Diagnosis of the cause of a hearing loss is carried out by a specialist physician (audiovestibular physician) or otorhinolaryngologist.
The inner ear contains a group of interconnected, fluid-filled chambers. The snail-shaped chamber, called the cochlea (KOK-lee-uh), plays a role in hearing. Sound vibrations from the bones of the middle ear are transferred to the fluids of the cochlea. Tiny sensors (hair cells) lining the cochlea convert the vibrations into electrical impulses that are transmitted along the auditory nerve to your brain.

The information contained on this page and in any third party websites referred to on this page is not intended nor implied to be a substitute for professional medical advice nor is it intended to be for medical diagnosis or treatment. Third party websites are not owned or controlled by Bupa and any individual may be able to access and post messages on them. Bupa is not responsible for the content or availability of these third party websites. We do not accept advertising on this page.

Muscle spasms: Tinnitus that is described as clicking may be due to abnormalities that cause the muscle in the roof of the mouth (palate) to go into spasm. This causes the Eustachian tube, which helps equalize pressure in the ears, to repeatedly open and close. Multiple sclerosis and other neurologic diseases that are associated with muscle spasms may also be a cause of tinnitus, as they may lead to spasms of certain muscles in the middle ear that can cause the repetitive clicking.

Cognitive behavioral therapy (CBT). CBT uses techniques such as cognitive restructuring and relaxation to change the way patients think about and respond to tinnitus. Patients usually keep a diary and perform "homework" to help build their coping skills. Therapy is generally short-term — for example, weekly sessions for two to six months. CBT may not make the sound less loud, but it can make it significantly less bothersome and improve quality of life.


Prolonged exposure to loud sounds is the most common cause of tinnitus. Up to 90% of people with tinnitus have some level of noise-induced hearing loss. The noise causes permanent damage to the sound-sensitive cells of the cochlea, a spiral-shaped organ in the inner ear. Carpenters, pilots, rock musicians, street-repair workers, and landscapers are among those whose jobs put them at risk, as are people who work with chain saws, guns, or other loud devices or who repeatedly listen to loud music. A single exposure to a sudden extremely loud noise can also cause tinnitus.
If you develop tinnitus, it's important to see your clinician. She or he will take a medical history, give you a physical examination, and do a series of tests to try to find the source of the problem. She or he will also ask you to describe the noise you're hearing (including its pitch and sound quality, and whether it's constant or periodic, steady or pulsatile) and the times and places in which you hear it. Your clinician will review your medical history, your current and past exposure to noise, and any medications or supplements you're taking. Tinnitus can be a side effect of many medications, especially when taken at higher doses (see "Some drugs that can cause or worsen tinnitus").
Post-lingual deafness is hearing loss that is sustained after the acquisition of language, which can occur due to disease, trauma, or as a side-effect of a medicine. Typically, hearing loss is gradual and often detected by family and friends of affected individuals long before the patients themselves will acknowledge the disability.[41] Post-lingual deafness is far more common than pre-lingual deafness. Those who lose their hearing later in life, such as in late adolescence or adulthood, face their own challenges, living with the adaptations that allow them to live independently.
"We're looking at the threshold that which you can hear sounds the softest, and you're usually pressing a button or raising your hands or somehow responding to when you hear those sounds. And we're evaluating the entire auditory system in that process - not just with the earphones, but we do some other tests to evaluate your middle ear and the inner ear, as well."

Conductive hearing loss occurs when sounds aren’t able to travel from the outer ear to the eardrum and the bones of the middle ear. When this type of hearing loss occurs, you may find it difficult to hear soft or muffled sounds. Conductive hearing loss isn’t always permanent. Medical interventions can treat it. Treatment may include antibiotics or surgical interventions, such as a cochlear implant. A cochlear implant is a small electrical machine placed under your skin behind the ear. It translates sound vibrations into electrical signals that your brain can then interpret as meaningful sound.
▶ For most inner ear problems, a sodium-restricted, caffeine-free diet is recommended. Caffeine is a central nervous system stimulant and its intake makes the symptoms of inner ear disorder (especially headache and dizziness) appear more pronounced. Hence, it is advisable to reduce the intake of caffeine as much as possible till the condition is completely treated. Excess sugar in the diet also triggers dizziness.
No. The worst case scenario is that the ringing in your ears may suggest you have permanent tinnitus and this may have a negative impact on your day to day life affecting your concentration, sleep and work performance which may lead to insomnia or depression for example. However, this can be controlled through certain therapies such as sound therapy and other self-help methods, which helps a person cope with tinnitus if it happens to be permanent.

Call centre staff using a telephone headset are vulnerable to ASD because of the increased likelihood of exposure, close to their ear(s), to an acoustic incident randomly transmitted via the telephone line. In the early 1990s, co-inciding with the rapid growth of call centres in Australia, increasing numbers of employees were reporting acoustic shock symptoms (2). A similar pattern was being noticed overseas (3, 4).
3. A number of headset manufacturers produce “acoustic shock prevention” devices for their headsets to plug into. They are relatively primitive devices that simply attenuate (raise or lower volume of) incoming sound. This means that if a loud noise comes in the unit will suppress all sound that the headset wearer hears including the caller’s voice.
There can be damage either to the ear, whether the external or middle ear, to the cochlea, or to the brain centers that process the aural information conveyed by the ears. Damage to the middle ear may include fracture and discontinuity of the ossicular chain. Damage to the inner ear (cochlea) may be caused by temporal bone fracture. People who sustain head injury are especially vulnerable to hearing loss or tinnitus, either temporary or permanent.[73][74]
Your ear consists of three major areas: outer ear, middle ear and inner ear. Sound waves pass through the outer ear and cause vibrations at the eardrum. The eardrum and three small bones of the middle ear amplify the vibrations as they travel to the inner ear. There, the vibrations pass through fluid in a snail-shaped structure in the inner ear (cochlea).
i am currently studying acoustic shock for a course i am taking. i do also work in a headset environment in a large office. I would be interested to hear of anyones experiences of acoustic shock, temporary real or perceived. i myself suffer from the confused hearing loss, unable to clearly know which direction noises are coming from. especially dangerous when you have police, ambulance or fire engine sirens coming close to you. not knowing the direction they are coming from makes it difficult to remove yourself from their way eg at a roundabout… my sleep is also disturbed on occassion, by low drumming noises. this has only happened over the past 5yrs whilst working a lot on the telephone section of my department. a lot of customers answer the phone whilst holding a screaming baby or have a parrot screeching behind them, some shout down the phone suddenly, the noise seems intensified when it is held in a headpiece….
When the sound waves reach the inner ear, they travel through the fluids of the cochlea. The cochlea is a snail-shaped structure in the inner ear. In the cochlea, there are nerve cells with thousands of miniature hairs attached to them. These hairs help convert the sound wave vibrations into electrical signals that then travel to your brain. Your brain interprets these electrical signals as sound. Different sound vibrations create different reactions in these tiny hairs, signaling different sounds to your brain.
If your doctor cannot find any medical condition responsible for your tinnitus, you may be referred to an otolaryngologist (commonly called an ear, nose, and throat doctor, or an ENT). The ENT will physically examine your head, neck, and ears and test your hearing to determine whether you have any hearing loss along with the tinnitus. You might also be referred to an audiologist who can also measure your hearing and evaluate your tinnitus.
Ménière’s disease is a long term, progressive condition affecting the balance and hearing parts of the inner ear. It most commonly affects people aged 20-60. It’s uncommon in children. People suffering from this disease experience: dizziness with a spinning sensation, feel unsteady, feel or are sick, hear ringing, roaring or buzzing inside the ear or a sudden drop in hearing.
This is one psychological approach that can be useful in managing tinnitus. The idea is that when you became aware of your tinnitus, you responded to it negatively. For example, you may have thought there was something seriously wrong with your hearing (a belief) and this led to you being anxious (an emotion), and you then tried to feel better, for example by avoiding silence (a behaviour). Some beliefs and behaviours are helpful and that’s great – keep doing them! But some beliefs and/or behaviours are unhelpful and CBT helps you to recognise them, and then you work together with the clinician (usually a psychologist, audiologist or hearing therapist) to find different ways of responding to the tinnitus so it becomes less bothersome.
With severe ASD, TTTS symptoms can be involuntarily aggravated by the mere placement of a headset over the ears in the workplace. I consider an ASD client should not return to headset or telephone duties on either ear until the symptoms have fully resolved. A graded return to work can then be carried out with handset use initially on the opposite ear.
When the sound waves reach the inner ear, they travel through the fluids of the cochlea. The cochlea is a snail-shaped structure in the inner ear. In the cochlea, there are nerve cells with thousands of miniature hairs attached to them. These hairs help convert the sound wave vibrations into electrical signals that then travel to your brain. Your brain interprets these electrical signals as sound. Different sound vibrations create different reactions in these tiny hairs, signaling different sounds to your brain.
This article was medically reviewed by Luba Lee, FNP-BC, MS. Luba Lee, FNP-BC is a board certified Family Nurse Practitioner (FNP) and educator in Tennessee with over a decade of clinical experience. Luba has certifications in Pediatric Advanced Life Support (PALS), Emergency Medicine, Advanced Cardiac Life Support (ACLS), Team Building, and Critical Care Nursing. She received her Master of Science in Nursing (MSN) from the University of Tennessee in 2006. This article has been viewed 3,276,631 times.
Ototoxic drugs also may cause subjective tinnitus, as they may cause hearing loss, or increase the damage done by exposure to loud noise. Those damages may occur even at doses that are not considered ototoxic.[28] More than 260 medications have been reported to cause tinnitus as a side effect.[29] In many cases, however, no underlying cause could be identified.[2]
×