Besides research studies seeking to improve hearing, such as the ones listed above, research studies on the deaf have also been carried out in order to understand more about audition. Pijil and Shwarz (2005) conducted their study on the deaf who lost their hearing later in life and, hence, used cochlear implants to hear. They discovered further evidence for rate coding of pitch, a system that codes for information for frequencies by the rate that neurons fire in the auditory system, especially for lower frequencies as they are coded by the frequencies that neurons fire from the basilar membrane in a synchronous manner. Their results showed that the subjects could identify different pitches that were proportional to the frequency stimulated by a single electrode. The lower frequencies were detected when the basilar membrane was stimulated, providing even further evidence for rate coding.[130]
Rather than a disease, tinnitus is a symptom that may result from various underlying causes.[2] The most common causes are hearing damage, noise-induced hearing loss or age-related hearing loss, known as presbycusis.[2] Other causes include ear infections, disease of the heart or blood vessels, Ménière's disease, brain tumors, exposure to certain medications, a previous head injury, earwax, and sometimes, the tinnitus is suddenly perceived during a period of emotional stress.[2][4] It is more common in those with depression.[3]
In addition to treating associated problems (such as depression or insomnia), there are several strategies that can help make tinnitus less bothersome. No single approach works for everyone, and you may need to try various combinations of techniques before you find what works for you. If you have age-related hearing loss, a hearing aid can often make tinnitus less noticeable by amplifying outside sounds.
Some medications may reversibly affect hearing. These medications are considered ototoxic. This includes loop diuretics such as furosemide and bumetanide, non-steroidal anti-inflammatory drugs (NSAIDs) both over-the-counter (aspirin, ibuprofen, naproxen) as well as prescription (celecoxib, diclofenac, etc.), paracetamol, quinine, and macrolide antibiotics.[63] Others may cause permanent hearing loss.[64] The most important group is the aminoglycosides (main member gentamicin) and platinum based chemotherapeutics such as cisplatin and carboplatin.[65][66]
Subjective tinnitus is the most frequent type of tinnitus. It may have many possible causes, but most commonly it results from hearing loss. When the tinnitus is caused by disorders of the inner ear or auditory nerve it is called otic (from the Greek word for ear).[23] These otological or neurological conditions include those triggered by infections, drugs, or trauma.[24] A frequent cause is traumatic noise exposure that damages hair cells in the inner ear.

"We're looking at the threshold that which you can hear sounds the softest, and you're usually pressing a button or raising your hands or somehow responding to when you hear those sounds. And we're evaluating the entire auditory system in that process - not just with the earphones, but we do some other tests to evaluate your middle ear and the inner ear, as well."

Your ear consists of three major areas: outer ear, middle ear and inner ear. Sound waves pass through the outer ear and cause vibrations at the eardrum. The eardrum and three small bones of the middle ear amplify the vibrations as they travel to the inner ear. There, the vibrations pass through fluid in a snail-shaped structure in the inner ear (cochlea).
Most hearing loss, that resulting from age and noise, is progressive and irreversible, and there are currently no approved or recommended treatments. A few specific kinds of hearing loss are amenable to surgical treatment. In other cases, treatment is addressed to underlying pathologies, but any hearing loss incurred may be permanent. Some management options include hearing aids, cochlear implants, assistive technology, and closed captioning.[9] This choice depends on the level of hearing loss, type of hearing loss, and personal preference. Hearing aid applications are one of the options for hearing loss management.[82] For people with bilateral hearing loss, it is not clear if bilateral hearing aids (hearing aids in both ears) are better than a unilateral hearing aid (hearing aid in one ear).[9]
The best supported treatment for tinnitus is a type of counseling called cognitive behavioral therapy (CBT) which can be delivered via the internet or in person.[5][68][82] It decreases the amount of stress those with tinnitus feel.[83] These benefits appear to be independent of any effect on depression or anxiety in an individual.[82] Acceptance and commitment therapy (ACT) also shows promise in the treatment of tinnitus.[84] Relaxation techniques may also be useful.[3] A clinical protocol called Progressive Tinnitus Management for treatment of tinnitus has been developed by the United States Department of Veterans Affairs.[85]
When the sound waves reach the inner ear, they travel through the fluids of the cochlea. The cochlea is a snail-shaped structure in the inner ear. In the cochlea, there are nerve cells with thousands of miniature hairs attached to them. These hairs help convert the sound wave vibrations into electrical signals that then travel to your brain. Your brain interprets these electrical signals as sound. Different sound vibrations create different reactions in these tiny hairs, signaling different sounds to your brain.
In cases of infection, antibiotics or antifungal medications are an option. Some conditions are amenable to surgical intervention such as middle ear fluid, cholesteatoma, and otosclerosis. If conductive hearing loss is due to head trauma, surgical repair is an option.[5] If absence or deformation of ear structures cannot be corrected, or if the patient declines surgery, hearing aids which amplify sounds are a possible treatment option.[2] Bone conduction hearing aids are useful as these deliver sound directly, through bone, to the cochlea or organ of hearing bypassing the pathology. These can be on a soft or hard headband or can be inserted surgically, a bone anchored hearing aid, of which there are several types. Conventional air conduction hearing aids can also be used.
Acoustic shock is an involuntary response to a sound perceived as traumatic (acoustic incident), which causes a specific and consistent pattern of neurophysiological and psychological symptoms (1).  The degree of trauma is influenced by the psychological context of the workplace and/or environment where the acoustic incident exposure occurred. Acoustic shock symptoms are usually temporary, but for some the symptoms can be persistent, escalate and result in a permanent disability. The term acoustic shock disorder (ASD) is used to identify this persistent symptom cluster.
Hearing loss is an increasing concern especially in aging populations, the prevalence of hearing loss increase about two-fold for each decade increase in age after age 40.[29] While the secular trend might decrease individual level risk of developing hearing loss, the prevalence of hearing loss is expected to rise due to the aging population in the US. Another concern about aging process is cognitive decline, which may progress to mild cognitive impairment and eventually dementia.[30] The association between hearing loss and cognitive decline has been studied in various research settings. Despite the variability in study design and protocols, the majority of these studies have found consistent association between age-related hearing loss and cognitive decline, cognitive impairment, and dementia.[31] The association between age-related hearing loss and Alzheimer's disease was found to be nonsignificant, and this finding supports the hypothesis that hearing loss is associated with dementia independent of Alzheimer pathology.[31] There are several hypothesis about the underlying causal mechanism for age-related hearing loss and cognitive decline. One hypothesis is that this association can be explained by common etiology or shared neurobiological pathology with decline in other physiological system.[32] Another possible cognitive mechanism emphasize on individual's cognitive load. As people developing hearing loss in the process of aging, the cognitive load demanded by auditory perception increases, which may lead to change in brain structure and eventually to dementia.[33] One other hypothesis suggests that the association between hearing loss and cognitive decline is mediated through various psychosocial factors, such as decrease in social contact and increase in social isolation.[32] Findings on the association between hearing loss and dementia have significant public health implication, since about 9% of dementia cases can be attributed to hearing loss.[34]
The most distressing and persistent ASD symptoms tend to be aural pain and hyperacusis. Sharp stabbing aural pain and numbness/burning in and around the ear are consistent with trigeminal nerve irritation. If pain levels are severe, treatment for trigeminal neuralgia, TMD and/or referral to a pain management clinic is indicated. Hyperacusis desensitisation therapy and massage of the muscular trigger points around the neck and shoulder will reduce TTTS symptoms, but progress can be slow once symptoms become entrenched.
Ménière’s disease is a long term, progressive condition affecting the balance and hearing parts of the inner ear. It most commonly affects people aged 20-60. It’s uncommon in children. People suffering from this disease experience: dizziness with a spinning sensation, feel unsteady, feel or are sick, hear ringing, roaring or buzzing inside the ear or a sudden drop in hearing.

Tinnitus is sometimes called ‘the sound of silence' because most people, if they are seated in a completely quiet soundproofed room, will hear a type of rushing or hissing sound. Usually this sound is masked by everyday environmental noise. It is when this noise becomes intrusive that it can become irritating and is known as ‘tinnitus'. The more anxious the sufferer gets the worse the tinnitus becomes.
If you are referred to a specialist tinnitus clinic, and your tinnitus is particularly troublesome, you will be introduced to more formal or structured ways of managing tinnitus. Most centres use a combination of approaches. You may come across some terms before, or hear them when you get there, and it helps to have some understanding of what these terms are.
With ASD, TTTS is associated with hyperacusis: the symptoms are triggered or exacerbated by exposure to sound perceived as intolerable, and the primary cause is related to an anxiety/trauma response to sound. Clinically, TTTS appears to be triggered by the anticipation as well as the perception of sounds considered to be highly threatening and/or intolerable. There is little known and much to research in understanding this aetiologic pathway.
Ginkgo biloba does not appear to be effective.[94][108] The American Academy of Otolaryngology recommends against taking melatonin or zinc supplements to relieve symptoms of tinnitus, and reported that evidence for efficacy of many dietary supplements—lipoflavonoids, garlic, homeopathy, traditional Chinese/Korean herbal medicine, honeybee larvae, other various vitamins and minerals—did not exist.[74] A 2016 Cochrane Review also concluded that evidence was not sufficient to support taking zinc supplements to reduce symptoms associated with tinnitus.[109]
Your ear has three main parts: outer, middle and inner. You use all of them in hearing. Sound waves come in through your outer ear. They reach your middle ear, where they make your eardrum vibrate. The vibrations are transmitted through three tiny bones, called ossicles, in your middle ear. The vibrations travel to your inner ear, a snail-shaped organ. The inner ear makes the nerve impulses that are sent to the brain. Your brain recognizes them as sounds. The inner ear also controls balance.
There is a progressive loss of ability to hear high frequencies with aging known as presbycusis. For men, this can start as early as 25 and women at 30. Although genetically variable it is a normal concomitant of ageing and is distinct from hearing losses caused by noise exposure, toxins or disease agents.[46] Common conditions that can increase the risk of hearing loss in elderly people are high blood pressure, diabetes, or the use of certain medications harmful to the ear.[47][48] While everyone loses hearing with age, the amount and type of hearing loss is variable.[49]
Psychological research has focussed on the tinnitus distress reaction (TDR) to account for differences in tinnitus severity.[16][19][20][21] These findings suggest that among those people, conditioning at the initial perception of tinnitus, linked tinnitus with negative emotions, such as fear and anxiety from unpleasant stimuli at the time. This enhances activity in the limbic system and autonomic nervous system, thus increasing tinnitus awareness and annoyance.[22]

The research carried out by Ramirez et al (14) shows the aural symptoms associated with TMD and their neurophysiological consequences are at least partially a consequence of TTTS. These aural symptoms and the typical pattern with TMD of chronic, severe myofascial pain; numbness, tingling and burning in and around the ear; escalation and trigger point development in the neck, shoulder and arm and central pain sensitisation are identical to those observed in my clients with severe ASD, and support the proposal that TTTS is the neurophysiological mechanism of ASD. However, ASD clients do not generally have temporomandibular joint (TMJ) dysfunction, unless it is part of a secondary escalation pattern. A hypothesis is presented that TMD can develop when TTTS is caused by an ASD, albeit with a different aetiologic pathway and without TMJ dysfunction.

Prelingual deafness is profound hearing loss that is sustained before the acquisition of language, which can occur due to a congenital condition or through hearing loss before birth or in early infancy. Prelingual deafness impairs an individual's ability to acquire a spoken language in children, but deaf children can acquire spoken language through support from cochlear implants (sometimes combined with hearing aids).[42][43] Non-signing (hearing) parents of deaf babies (90-95% of cases) usually go with oral approach without the support of sign language, as these families lack previous experience with sign language and cannot competently provide it to their children without learning it themselves. Unfortunately, this may in some cases (late implantation or not sufficient benefit from cochlear implants) bring the risk of language deprivation for the deaf baby[44] because the deaf baby wouldn't have a sign language if the child is unable to acquire spoken language successfully. The 5-10% of cases of deaf babies born into signing families have the potential of age-appropriate development of language due to early exposure to a sign language by sign-competent parents, thus they have the potential to meet language milestones, in sign language in lieu of spoken language.[45]


MRI (or magnetic resonance imaging) scan is a radiology technique which uses magnetism, radio waves, and a computer to produce images of body structures. MRI scanning is painless and does not involve X-ray radiation. Patients with heart pacemakers, metal implants, or metal chips or clips in or around the eyes cannot be scanned with MRI because of the effect of the magnet.
Hearing loss is an increasing concern especially in aging populations, the prevalence of hearing loss increase about two-fold for each decade increase in age after age 40.[29] While the secular trend might decrease individual level risk of developing hearing loss, the prevalence of hearing loss is expected to rise due to the aging population in the US. Another concern about aging process is cognitive decline, which may progress to mild cognitive impairment and eventually dementia.[30] The association between hearing loss and cognitive decline has been studied in various research settings. Despite the variability in study design and protocols, the majority of these studies have found consistent association between age-related hearing loss and cognitive decline, cognitive impairment, and dementia.[31] The association between age-related hearing loss and Alzheimer's disease was found to be nonsignificant, and this finding supports the hypothesis that hearing loss is associated with dementia independent of Alzheimer pathology.[31] There are several hypothesis about the underlying causal mechanism for age-related hearing loss and cognitive decline. One hypothesis is that this association can be explained by common etiology or shared neurobiological pathology with decline in other physiological system.[32] Another possible cognitive mechanism emphasize on individual's cognitive load. As people developing hearing loss in the process of aging, the cognitive load demanded by auditory perception increases, which may lead to change in brain structure and eventually to dementia.[33] One other hypothesis suggests that the association between hearing loss and cognitive decline is mediated through various psychosocial factors, such as decrease in social contact and increase in social isolation.[32] Findings on the association between hearing loss and dementia have significant public health implication, since about 9% of dementia cases can be attributed to hearing loss.[34]
5. There is only one system (Polaris Soundshield) which fully protects headset wearers and, understandably, it is headset-independant. Rather than being designed to compensate for the shortcomings (real or perceived) of the manufacturers’ headsets it was designed by the National Acoustic Laboratory of Australia in conjunction with hearing specialists. Consequently it can give greater protection than the most high-falutin’ top of the range headset-adaptor combo even when used with a cheap, workhorse headset.

Tinnitus is the perception of sound when no corresponding external sound is present.[1] While often described as a ringing, it may also sound like a clicking, buzzing, hiss, or roaring.[2] The sound may be soft or loud, low or high pitched, and appear to be coming from one or both ears.[2] In some people, the sound may interfere with concentration or increase feelings of anxiety or depression.[2] Tinnitus may be associated with some degree of hearing loss and with decreased understanding in noise.[2]
Other infections. Sometimes, the bacteria can spread deeper into your skin or to other parts of your body. One rare condition is malignant otitis externa, which happens when the infection moves into bone and cartilage in your head. It's a medical emergency, and it's most common in older people with diabetes and people with HIV or other immune system problems.
Tinnitus is sometimes called ‘the sound of silence' because most people, if they are seated in a completely quiet soundproofed room, will hear a type of rushing or hissing sound. Usually this sound is masked by everyday environmental noise. It is when this noise becomes intrusive that it can become irritating and is known as ‘tinnitus'. The more anxious the sufferer gets the worse the tinnitus becomes.
Most tinnitus is subjective, meaning that only you can hear the noise. But sometimes it's objective, meaning that someone else can hear it, too. For example, if you have a heart murmur, you may hear a whooshing sound with every heartbeat; your clinician can also hear that sound through a stethoscope. Some people hear their heartbeat inside the ear — a phenomenon called pulsatile tinnitus. It's more likely to happen in older people, because blood flow tends to be more turbulent in arteries whose walls have stiffened with age. Pulsatile tinnitus may be more noticeable at night, when you're lying in bed and there are fewer external sounds to mask the tinnitus. If you notice any new pulsatile tinnitus, you should consult a clinician, because in rare cases it is a sign of a tumor or blood vessel damage.

Ginkgo biloba does not appear to be effective.[94][108] The American Academy of Otolaryngology recommends against taking melatonin or zinc supplements to relieve symptoms of tinnitus, and reported that evidence for efficacy of many dietary supplements—lipoflavonoids, garlic, homeopathy, traditional Chinese/Korean herbal medicine, honeybee larvae, other various vitamins and minerals—did not exist.[74] A 2016 Cochrane Review also concluded that evidence was not sufficient to support taking zinc supplements to reduce symptoms associated with tinnitus.[109]
Rapid referral for a comprehensive audiological assessment provides reassurance, and can help control an escalation of symptoms and limit the development of hyperacusis. History taking should document immediate and persistent symptoms since the acoustic incident exposure; prior acoustic incident exposures; and prior otological and psychological history. Significant malingering is rare in ASD clients, in my experience. Most clients are bewildered, frightened or angered by their symptoms and desperate to recover.
Tympanometry, or acoustic immitance testing, is a simple objective test of the ability of the middle ear to transmit sound waves from the outer ear to the middle ear and to the inner ear. This test is usually abnormal with conductive hearing loss. A type B tympanogram reveals a flat response, due to fluid in the middle ear (otitis media), or an eardrum perforation.[4] A type C tympanogram indicates negative middle ear pressure, which is commonly seen in eustachian tube dysfunction[4]. A type As tympanogram indicates a shallow compliance of the middle ear, which is commonly seen in otosclerosis[4].
Outer ear infection: otitis externa – usually affects adults aged 45 to 75. It affects the ear canal and is often caused by bacterial infection of the skin of the canal, or a fungus or a yeast. It can also be caused by an irritation such as wearing earplugs or a hearing aid. It is common in people who suffer from skin problems such as eczema, psoriasis or dermatitis but also in people who are keen swimmers.
Besides being an annoying condition to which most people adapt, persistent tinnitus may cause anxiety and depression in some people.[12][13] Tinnitus annoyance is more strongly associated with the psychological condition of the person than the loudness or frequency range.[14][15] Psychological problems such as depression, anxiety, sleep disturbances, and concentration difficulties are common in those with strongly annoying tinnitus.[16][17] 45% of people with tinnitus have an anxiety disorder at some time in their life.[18]
Ramirez et al (14) aimed to explore the anatomical and physiological connections in TMD patients with secondary aural symptoms and the central and peripheral mechanisms involved. The authors carried out an extensive peer-reviewed literature search, using data from (12), 436 patients in 49 papers, to analyse aural symptoms (otalgia, tinnitus, vertigo, subjective hearing loss and aural fullness) exacerbated by dysfunctional mouth and jaw dynamics. They proposed a range of muscular, bone communication and neural scenarios to explain this relationship, placing emphasis on tensor tympani muscle involvement and trigeminal nerve dysfunction.
Tinnitus (pronounced ti-ni-tis), or ringing in the ears, is the sensation of hearing ringing, buzzing, hissing, chirping, whistling, or other sounds. The noise can be intermittent or continuous, and can vary in loudness. It is often worse when background noise is low, so you may be most aware of it at night when you're trying to fall asleep in a quiet room. In rare cases, the sound beats in sync with your heart (pulsatile tinnitus).
Hyperacusis is an increased sensitivity to sound. If you find that everyday or ordinary sounds are uncomfortable, you may have hyperacusis. Whilst it might seem natural to want to block out as much sound as possible, avoiding sound can actually make hyperacusis worse. Talk to your GP about this and ask for a referral to either an ENT Surgeon or Audiovestibular Physician who will be able to suggest management options – often, using sound (in a very controlled way) can improve hyperacusis.
When TRT was developed in the 1980s by neuroscientist Dr. Pawel Jastreboff, it was designed to be administered according to a strict protocol. Today, the term TRT is being used to describe modified versions of this therapy, and the variations make accurate assessment of its effectiveness difficult. Individual studies have reported improvements in as many as 80% of patients with high-pitched tinnitus.

The initial physiological symptoms of acoustic shock are considered to be a direct consequence of excessive, involuntary middle ear muscle contractions. While the stapedial reflex is an acoustic reflex triggered by high volume levels, the tensor tympani reflex is a startle reflex (6, 7) which is exaggerated by high stress levels. The tensor tympani muscle contracts immediately preceding the sounds produced during self-vocalisation, suggesting it has an established protective function to loud sounds (1), assists in the discrimination of low frequency sounds (8), and is involved in velopharyngeal movements (8).


You must consult with a qualified physician or hearing healthcare clinician to find the proper treatment for hyperacusis. All content, text, graphics, and information is for general informational purposes and is not intended for use as a diagnosis or treatment of a health problem or as a substitute for consulting a licensed medical professional. The Hyperacusis Network is a free network and accepts no advertising. Any information received is kept confidential and shared with no one.
Assessment of psychological processes related to tinnitus involves measurement of tinnitus severity and distress (i.e., nature and extent of tinnitus-related problems), measured subjectively by validated self-report tinnitus questionnaires.[16] These questionnaires measure the degree of psychological distress and handicap associated with tinnitus, including effects on hearing, lifestyle, health and emotional functioning.[63][64][65] A broader assessment of general functioning, such as levels of anxiety, depression, stress, life stressors and sleep difficulties, is also important in the assessment of tinnitus due to higher risk of negative well-being across these areas, which may be affected by or exacerbate the tinnitus symptoms for the individual.[66] Overall, current assessment measures are aimed to identify individual levels of distress and interference, coping responses and perceptions of tinnitus in order to inform treatment and monitor progress. However, wide variability, inconsistencies and lack of consensus regarding assessment methodology are evidenced in the literature, limiting comparison of treatment effectiveness.[67] Developed to guide diagnosis or classify severity, most tinnitus questionnaires have been shown to be treatment-sensitive outcome measures.[68]
Noise-induced hearing loss (NIHL) typically manifests as elevated hearing thresholds (i.e. less sensitivity or muting). Noise exposure is the cause of approximately half of all cases of hearing loss, causing some degree of problems in 5% of the population globally.[50] The majority of hearing loss is not due to age, but due to noise exposure.[51] Various governmental, industry and standards organizations set noise standards.[52] Many people are unaware of the presence of environmental sound at damaging levels, or of the level at which sound becomes harmful. Common sources of damaging noise levels include car stereos, children's toys, motor vehicles, crowds, lawn and maintenance equipment, power tools, gun use, musical instruments, and even hair dryers. Noise damage is cumulative; all sources of damage must be considered to assess risk. In the US, 12.5% of children aged 6–19 years have permanent hearing damage from excessive noise exposure.[53] The World Health Organization estimates that half of those between 12 and 35 are at risk from using personal audio devices that are too loud.[11] Hearing loss in adolescents may be caused by loud noise from toys, music by headphones, and concerts or events.[54]
TTTS was originally described by Dr I. Klockhoff (9-12), and has been proposed by Patuzzi, Milhinch and Doyle (13) and Patuzzi (7) as the neurophysiological mechanism causing most of the persistent ASD symptoms. TTTS is an involuntary condition where the centrally mediated reflex threshold for tensor tympani muscle activity becomes reduced as a result of anxiety and trauma, so it is continually and rhythmically contracting and relaxing, aggravated by intolerable sound exposure1. This appears to initiate a cascade of physiological reactions in and around the ear, which can include: tympanic membrane flutter; alterations in ventilation of the middle ear cavity leading to a sense of blockage or fullness, as well as muffled/echoey/distorted hearing; irritation of the trigeminal nerve innervating the tensor tympani muscle, leading to frequent neuralgic pain; and symptoms consistent with temporomandibular disorder (TMD).
Hearing loss in both ears can be either conductive, sensorineural, or a mixture of both. It’s best to see an audiologist whenever you think there is a noticeable change in both your ears. They’ll fully assess your ears and perform a number of tests to determine the type of hearing loss you may have, and they’ll be able to recommend the best treatment option to help.
Ototoxic drugs also may cause subjective tinnitus, as they may cause hearing loss, or increase the damage done by exposure to loud noise. Those damages may occur even at doses that are not considered ototoxic.[28] More than 260 medications have been reported to cause tinnitus as a side effect.[29] In many cases, however, no underlying cause could be identified.[2]
Various theories about the pathophysiology of acoustic shock have been proposed.2–4,6,7 One popular theory is that the symptoms are caused by tonic tensor tympani syndrome2,3: the initial response after an acoustic incident is thought to be an exaggerated startle response with contraction of the tensor tympani muscle in addition to the normal acoustic protection provided by the stapedial reflex. Continued contraction of the tensor tympani muscle then generates many of the symptoms of acoustic shock including aural pain and fullness, tinnitus, vertigo and distortion of hearing. Although this model has many proponents there is as yet no robust scientific support. Cochlear damage has been suggested as a mechanism but the absence of sensorineural hearing loss in many cases militates against this theory.

Tinnitus may be perceived in one or both ears. The noise can be described in many different ways but is reported as a noise inside a person's head in the absence of auditory stimulation. It often is described as a ringing noise, but in some people, it takes the form of a high-pitched whining, electric buzzing, hissing, humming, tinging, whistling, ticking, clicking, roaring, beeping, sizzling, a pure steady tone such as that heard during a hearing test, or sounds that slightly resemble human voices, tunes, songs, or animal sounds such as "crickets", "tree frogs", or "locusts (cicadas)".[4] Tinnitus may be intermittent or continuous: in the latter case, it may be the cause of great distress. In some individuals, the intensity may be changed by shoulder, head, tongue, jaw, or eye movements.[7]


The initial physiological symptoms of acoustic shock are considered to be a direct consequence of excessive, involuntary middle ear muscle contractions. While the stapedial reflex is an acoustic reflex triggered by high volume levels, the tensor tympani reflex is a startle reflex (6, 7) which is exaggerated by high stress levels. The tensor tympani muscle contracts immediately preceding the sounds produced during self-vocalisation, suggesting it has an established protective function to loud sounds (1), assists in the discrimination of low frequency sounds (8), and is involved in velopharyngeal movements (8).
Subjective tinnitus is the most frequent type of tinnitus. It may have many possible causes, but most commonly it results from hearing loss. When the tinnitus is caused by disorders of the inner ear or auditory nerve it is called otic (from the Greek word for ear).[23] These otological or neurological conditions include those triggered by infections, drugs, or trauma.[24] A frequent cause is traumatic noise exposure that damages hair cells in the inner ear.
The best supported treatment for tinnitus is a type of counseling called cognitive behavioral therapy (CBT) which can be delivered via the internet or in person.[5][68][82] It decreases the amount of stress those with tinnitus feel.[83] These benefits appear to be independent of any effect on depression or anxiety in an individual.[82] Acceptance and commitment therapy (ACT) also shows promise in the treatment of tinnitus.[84] Relaxation techniques may also be useful.[3] A clinical protocol called Progressive Tinnitus Management for treatment of tinnitus has been developed by the United States Department of Veterans Affairs.[85]
The potential severity and persistence of ASD symptoms have significant clinical and medico-legal implications. With the rapid growth of call centres around the world, professionals providing tinnitus and hyperacusis therapy, as well as general practitioners, ENT specialists, occupational physicians, TMD specialists, neurologists and trauma psychologists/psychiatrists, are increasingly likely to encounter some or all of the cluster of ASD symptoms in their clients.
^ Global Burden of Disease Study 2013 Collaborators (August 2015). "Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 386 (9995): 743–800. doi:10.1016/s0140-6736(15)60692-4. PMC 4561509. PMID 26063472.
When there does not seem to be a connection with a disorder of the inner ear or auditory nerve, the tinnitus is called nonotic (i.e. not otic). In some 30% of tinnitus cases, the tinnitus is influenced by the somatosensory system, for instance, people can increase or decrease their tinnitus by moving their face, head, or neck.[25] This type is called somatic or craniocervical tinnitus, since it is only head or neck movements that have an effect.[23]
Hearing loss is common with approximately 16% of adults having a hearing loss. There are different types of deafness. Some are caused by problems with the cochlear or the nerve of hearing, others are caused by middle ear fluid (glue ear), problems with the eardrum or the tiny hearing bones in the middle ear. Treatment depends on the underlying cause and can include surgery or a hearing aid. 
According to Ramirez et al, at a peripheral level TTTS appears to trigger a series of physiological reactions in and around the ear from tympanic membrane tension and alterations in middle ear ventilation. The tensor tympani muscle is innervated by the motor portion of the mandibular branch of the trigeminal nerve, and the authors consider that TTTS can lead to, and in an efferent pathway be caused by, an abnormal stimulation of the trigeminal nerve. This can lead to a chronic irritation of the trigeminal nerve, as well as other cranial and cervical sensory nerves of the ear and periauricular region. Central sensitisation can develop from the resultant chronic pain, leading to an expansion of the perceived peripheral pain and resulting in the typical symptoms of severe TMD.

^ "Childhood hearing loss: act now, here's how!" (PDF). WHO. 2016. p. 6. Archived (PDF) from the original on 6 March 2016. Retrieved 2 March 2016. Over 30% of childhood hearing loss is caused by diseases such as measles, mumps, rubella, meningitis and ear infections. These can be prevented through immunization and good hygiene practices. Another 17% of childhood hearing loss results from complications at birth, including prematurity, low birth weight, birth asphyxia and neonatal jaundice. Improved maternal and child health practices would help to prevent these complications. The use of ototoxic medicines in expectant mothers and newborns, which is responsible for 4% of childhood hearing loss, could potentially be avoided.


If your hearing loss is caused by a bacterial infection of the outer ear canal, your doctor may prescribe antibiotic drops. Antibiotics taken by mouth are usually prescribed only for very severe middle ear infections. Ask your pharmacist for advice on your medicine, and always read the patient information leaflet that comes with it. If you keep getting ear infections, your doctor may refer you to a specialist.
^ Tyler RS, Pienkowski M, Roncancio ER, Jun HJ, Brozoski T, Dauman N, Dauman N, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BC (2014). "A review of hyperacusis and future directions: part I. Definitions and manifestations" (PDF). American Journal of Audiology. 23 (4): 402–19. doi:10.1044/2014_AJA-14-0010. PMID 25104073. Archived (PDF) from the original on May 9, 2018. Retrieved September 23, 2017.
Can ear wax cause hearing loss? Yes, one of the most common causes of conductive hearing loss is a blockage in the external ear canal, usually caused by wax (excessive cerum). Other causes of conductive hearing loss can be infections of the ear canal, a perforated or ruptured eardrum (tympanic membrane), very small ears, cysts and tumours, or foreign objects in the ear canal. Otosclerosis, which is an abnormal growth of bone in the middle ear, can also cause a conductive hearing loss.
Hearing loss can be inherited. Around 75–80% of all these cases are inherited by recessive genes, 20–25% are inherited by dominant genes, 1–2% are inherited by X-linked patterns, and fewer than 1% are inherited by mitochondrial inheritance.[55] Syndromic deafness occurs when there are other signs or medical problems aside from deafness in an individual,[55] such as Usher syndrome, Stickler syndrome, Waardenburg syndrome, Alport's syndrome, and neurofibromatosis type 2. Nonsyndromic deafness occurs when there are no other signs or medical problems associated with an individual other than deafness.[55]
Try the skull-thumping trick. If you're coming home from a concert or a club, and your ears won't stop ringing, it's because you've damaged some of the little hairs in your cochlea, which causes inflammation and stimulation of nerves. Your brain interprets this inflammation as constant ringing or buzzing, and this trick can help make that annoying sound go away.
Tympanometry, or acoustic immitance testing, is a simple objective test of the ability of the middle ear to transmit sound waves from the outer ear to the middle ear and to the inner ear. This test is usually abnormal with conductive hearing loss. A type B tympanogram reveals a flat response, due to fluid in the middle ear (otitis media), or an eardrum perforation.[4] A type C tympanogram indicates negative middle ear pressure, which is commonly seen in eustachian tube dysfunction[4]. A type As tympanogram indicates a shallow compliance of the middle ear, which is commonly seen in otosclerosis[4].
As ASD symptoms are subjective, they are easily misunderstood, misdiagnosed or not believed. An inadequate understanding of the symptoms often exacerbates anxiety, and can lead to confusion and distress. The long term symptoms of severe ASD are consistent with severe hyperacusis, or category 4 according to the Tinnitus Retraining Therapy (TRT) system of classification. Some of the most severe cases of hyperacusis seen in my clinic are those with ASD.
i am currently studying acoustic shock for a course i am taking. i do also work in a headset environment in a large office. I would be interested to hear of anyones experiences of acoustic shock, temporary real or perceived. i myself suffer from the confused hearing loss, unable to clearly know which direction noises are coming from. especially dangerous when you have police, ambulance or fire engine sirens coming close to you. not knowing the direction they are coming from makes it difficult to remove yourself from their way eg at a roundabout… my sleep is also disturbed on occassion, by low drumming noises. this has only happened over the past 5yrs whilst working a lot on the telephone section of my department. a lot of customers answer the phone whilst holding a screaming baby or have a parrot screeching behind them, some shout down the phone suddenly, the noise seems intensified when it is held in a headpiece….
Most people find that their tinnitus does seem to settle down after this initial period, even without doing anything in particular. You might hear this being referred to as habituation. It’s a bit like walking into a room with a noisy fan or air conditioner. Initially, it seems really loud and then after a while, you stop noticing it as much. Tinnitus can often be much the same – initially, it’s more noticeable but you gradually notice it less than you did. The first time you realise it’s in the background is a great moment – it confirms that there are times when it’s less noticeable, which means you should be able to keep doing the things that you enjoy doing.

^ Jump up to: a b Schecklmann, Martin; Vielsmeier, Veronika; Steffens, Thomas; Landgrebe, Michael; Langguth, Berthold; Kleinjung, Tobias; Andersson, Gerhard (18 April 2012). "Relationship between Audiometric Slope and Tinnitus Pitch in Tinnitus Patients: Insights into the Mechanisms of Tinnitus Generation". PLOS ONE. 7 (4): e34878. Bibcode:2012PLoSO...734878S. doi:10.1371/journal.pone.0034878. PMC 3329543. PMID 22529949.


^ Jump up to: a b Loughrey DG, Kelly ME, Kelley GA, Brennan S, Lawlor BA (February 2018). "Association of Age-Related Hearing Loss With Cognitive Function, Cognitive Impairment, and Dementia: A Systematic Review and Meta-analysis". JAMA Otolaryngology-- Head & Neck Surgery. 144 (2): 115–126. doi:10.1001/jamaoto.2017.2513. PMC 5824986. PMID 29222544.
Hearing loss is associated with Alzheimer's disease and dementia. The risk increases with the hearing loss degree. There are several hypotheses including cognitive resources being redistributed to hearing and social isolation from hearing loss having a negative effect.[27] According to preliminary data, hearing aid usage can slow down the decline in cognitive functions.[28]
^ El Dib RP, Mathew JL, Martins RH (April 2012). El Dib RP (ed.). "Interventions to promote the wearing of hearing protection". The Cochrane Database of Systematic Reviews. 4 (4): CD005234. doi:10.1002/14651858.CD005234.pub5. PMID 22513929. (Retracted, see doi:10.1002/14651858.cd005234.pub6. If this is an intentional citation to a retracted paper, please replace {{Retracted}} with {{Retracted|intentional=yes}}.)
A 2005 study achieved successful regrowth of cochlea cells in guinea pigs.[119] However, the regrowth of cochlear hair cells does not imply the restoration of hearing sensitivity, as the sensory cells may or may not make connections with neurons that carry the signals from hair cells to the brain. A 2008 study has shown that gene therapy targeting Atoh1 can cause hair cell growth and attract neuronal processes in embryonic mice. Some hope that a similar treatment will one day ameliorate hearing loss in humans.[120]

About half of hearing loss globally is preventable through public health measures.[2] Such practices include immunization, proper care around pregnancy, avoiding loud noise, and avoiding certain medications.[2] The World Health Organization recommends that young people limit exposure to loud sounds and the use of personal audio players to an hour a day in an effort to limit exposure to noise.[11] Early identification and support are particularly important in children.[2] For many, hearing aids, sign language, cochlear implants and subtitles are useful.[2] Lip reading is another useful skill some develop.[2] Access to hearing aids, however, is limited in many areas of the world.[2]

Some people also experience a lot of pressure and pain in the ears. There can also be headache, muscle and joint pain along the neck, and stiffness of the limbs along with a tingling sensation on the top of the head, arms, and legs. In rare cases, there may be some emotional or psychological problems such as anxiety and panic attacks. The person may feel depressed, tired and frustrated. He/she may lose interest in routine activities. These, however, are common psychological side effects of general ill-health.


Other potential sources of the sounds normally associated with tinnitus should be ruled out. For instance, two recognized sources of high-pitched sounds might be electromagnetic fields common in modern wiring and various sound signal transmissions. A common and often misdiagnosed condition that mimics tinnitus is radio frequency (RF) hearing, in which subjects have been tested and found to hear high-pitched transmission frequencies that sound similar to tinnitus.[72][73]
Ménière’s disease is a long term, progressive condition affecting the balance and hearing parts of the inner ear. It most commonly affects people aged 20-60. It’s uncommon in children. People suffering from this disease experience: dizziness with a spinning sensation, feel unsteady, feel or are sick, hear ringing, roaring or buzzing inside the ear or a sudden drop in hearing.
ASD is beginning to be recognised as a legitimate and discreet disorder, and can be readily misdiagnosed as TMD stemming from TMJ dysfunction. From a differential diagnosis perspective, TMJ dysfunction can lead to TTTS symptoms and escalate to TMD. While central pain sensitisation is common with TMD caused by TMJ dysfunction, the aural symptoms do not tend to escalate and hyperacusis is not usually present.
Atherosclerosis. With age and buildup of cholesterol and other deposits, major blood vessels close to your middle and inner ear lose some of their elasticity — the ability to flex or expand slightly with each heartbeat. That causes blood flow to become more forceful, making it easier for your ear to detect the beats. You can generally hear this type of tinnitus in both ears.

Depression is one of the leading causes of morbidity and mortality worldwide. In older adults, the suicide rate is higher than it is for younger adults, and more suicide cases are attributable to depression.[38] Different studies have been done to investigate potential risk factors that can give rise to depression in later life. Some chronic diseases are found to be significantly associated with risk of developing depression, such as coronary heart disease, pulmonary disease, vision loss and hearing loss.[39] Hearing loss can attribute to decrease in health-related quality of life, increase in social isolation and decline in social engagement, which are all risk factors for increased risk of developing depression symptoms.[40]


The other fluid-filled chambers of the inner ear include three tubes called the semicircular canals (vestibular labyrinth). Hair cells in the semicircular canals detect the motion of the fluids when you move in any direction. They convert the motion into electrical signals that are transmitted along the vestibular nerve to the brain. This sensory information enables you to maintain your sense of balance.
^ Langguth B, Goodey R, Azevedo A, et al. (2007). "Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006". Tinnitus: Pathophysiology and Treatment. Progress in Brain Research. 166. pp. 525–36. doi:10.1016/S0079-6123(07)66050-6. ISBN 978-0444531674. PMC 4283806. PMID 17956816.
People often say that they are aware of noises in the ears when they have a cold, an ear infection or wax blocking the ear. Sometimes people become aware of tinnitus following a really stressful event and once they’re aware of it, seem to notice it more and more, but this usually fades once these things have passed. However, some people continue to notice the tinnitus, for example after an infection has cleared up.

Besides research studies seeking to improve hearing, such as the ones listed above, research studies on the deaf have also been carried out in order to understand more about audition. Pijil and Shwarz (2005) conducted their study on the deaf who lost their hearing later in life and, hence, used cochlear implants to hear. They discovered further evidence for rate coding of pitch, a system that codes for information for frequencies by the rate that neurons fire in the auditory system, especially for lower frequencies as they are coded by the frequencies that neurons fire from the basilar membrane in a synchronous manner. Their results showed that the subjects could identify different pitches that were proportional to the frequency stimulated by a single electrode. The lower frequencies were detected when the basilar membrane was stimulated, providing even further evidence for rate coding.[130]
A case history (usually a written form, with questionnaire) can provide valuable information about the context of the hearing loss, and indicate what kind of diagnostic procedures to employ. Examinations include otoscopy, tympanometry, and differential testing with the Weber, Rinne, Bing and Schwabach tests. In case of infection or inflammation, blood or other body fluids may be submitted for laboratory analysis. MRI and CT scans can be useful to identify the pathology of many causes of hearing loss.

Assessment of psychological processes related to tinnitus involves measurement of tinnitus severity and distress (i.e., nature and extent of tinnitus-related problems), measured subjectively by validated self-report tinnitus questionnaires.[16] These questionnaires measure the degree of psychological distress and handicap associated with tinnitus, including effects on hearing, lifestyle, health and emotional functioning.[63][64][65] A broader assessment of general functioning, such as levels of anxiety, depression, stress, life stressors and sleep difficulties, is also important in the assessment of tinnitus due to higher risk of negative well-being across these areas, which may be affected by or exacerbate the tinnitus symptoms for the individual.[66] Overall, current assessment measures are aimed to identify individual levels of distress and interference, coping responses and perceptions of tinnitus in order to inform treatment and monitor progress. However, wide variability, inconsistencies and lack of consensus regarding assessment methodology are evidenced in the literature, limiting comparison of treatment effectiveness.[67] Developed to guide diagnosis or classify severity, most tinnitus questionnaires have been shown to be treatment-sensitive outcome measures.[68]
^ Jump up to: a b Schecklmann, Martin; Vielsmeier, Veronika; Steffens, Thomas; Landgrebe, Michael; Langguth, Berthold; Kleinjung, Tobias; Andersson, Gerhard (18 April 2012). "Relationship between Audiometric Slope and Tinnitus Pitch in Tinnitus Patients: Insights into the Mechanisms of Tinnitus Generation". PLOS ONE. 7 (4): e34878. Bibcode:2012PLoSO...734878S. doi:10.1371/journal.pone.0034878. PMC 3329543. PMID 22529949.
Rather than a disease, tinnitus is a symptom that may result from various underlying causes.[2] The most common causes are hearing damage, noise-induced hearing loss or age-related hearing loss, known as presbycusis.[2] Other causes include ear infections, disease of the heart or blood vessels, Ménière's disease, brain tumors, exposure to certain medications, a previous head injury, earwax, and sometimes, the tinnitus is suddenly perceived during a period of emotional stress.[2][4] It is more common in those with depression.[3]

If there is a change in the system, for example, a hearing loss or ear infection, the amount of information being sent to the brain changes. The brain then responds to this change in levels by trying to get more information from the ear, and the extra information you may get is the sound we call tinnitus. The tinnitus is therefore actually brain activity and not the ear itself! It is generally accepted that it isn’t only a change in the ear that can result in tinnitus, but it could be due to a change in our stress levels, for example, with tinnitus being noticed after periods of significant stress, a change in life circumstances or general wellbeing.
The initial physiological symptoms of acoustic shock are considered to be a direct consequence of excessive, involuntary middle ear muscle contractions. While the stapedial reflex is an acoustic reflex triggered by high volume levels, the tensor tympani reflex is a startle reflex (6, 7) which is exaggerated by high stress levels. The tensor tympani muscle contracts immediately preceding the sounds produced during self-vocalisation, suggesting it has an established protective function to loud sounds (1), assists in the discrimination of low frequency sounds (8), and is involved in velopharyngeal movements (8).
If you have good hearing, your doctor may suggest a sound generator. These used to be called masking devices. There are two main types. One is a portable machine that produces calming sounds. The other fits to your ear like a hearing aid and produces a constant low-level noise or tone, sometimes called white noise, masking (covering up) the tinnitus. This may also help your brain get used to the tinnitus. Some people find that sound generators interfere with their hearing while they’re using them.

^ Jump up to: a b c Han BI, Lee HW, Kim TY, Lim JS, Shin KS (March 2009). "Tinnitus: characteristics, causes, mechanisms, and treatments". Journal of Clinical Neurology. 5 (1): 11–19. doi:10.3988/jcn.2009.5.1.11. PMC 2686891. PMID 19513328. About 75% of new cases are related to emotional stress as the trigger factor rather than to precipitants involving cochlear lesions.


Besides being an annoying condition to which most people adapt, persistent tinnitus may cause anxiety and depression in some people.[12][13] Tinnitus annoyance is more strongly associated with the psychological condition of the person than the loudness or frequency range.[14][15] Psychological problems such as depression, anxiety, sleep disturbances, and concentration difficulties are common in those with strongly annoying tinnitus.[16][17] 45% of people with tinnitus have an anxiety disorder at some time in their life.[18]
The potential severity and persistence of ASD symptoms have significant clinical and medico-legal implications. With the rapid growth of call centres around the world, professionals providing tinnitus and hyperacusis therapy, as well as general practitioners, ENT specialists, occupational physicians, TMD specialists, neurologists and trauma psychologists/psychiatrists, are increasingly likely to encounter some or all of the cluster of ASD symptoms in their clients.
Studies have shown that older adults with hearing loss have a greater risk of developing dementia than older adults with normal hearing. Cognitive abilities (including memory and concentration) decline faster in older adults with hearing loss than in older adults with normal hearing. Treating hearing problems may be important for cognitive health. See What’s the Connection Between Hearing and Cognitive Health?
Your ear has three main parts: outer, middle and inner. You use all of them in hearing. Sound waves come in through your outer ear. They reach your middle ear, where they make your eardrum vibrate. The vibrations are transmitted through three tiny bones, called ossicles, in your middle ear. The vibrations travel to your inner ear, a snail-shaped organ. The inner ear makes the nerve impulses that are sent to the brain. Your brain recognizes them as sounds. The inner ear also controls balance.
Ginkgo biloba does not appear to be effective.[94][108] The American Academy of Otolaryngology recommends against taking melatonin or zinc supplements to relieve symptoms of tinnitus, and reported that evidence for efficacy of many dietary supplements—lipoflavonoids, garlic, homeopathy, traditional Chinese/Korean herbal medicine, honeybee larvae, other various vitamins and minerals—did not exist.[74] A 2016 Cochrane Review also concluded that evidence was not sufficient to support taking zinc supplements to reduce symptoms associated with tinnitus.[109]

There are three parts to your ear: the outer ear, middle ear and inner ear. The outer ear is the part you can see. It is shaped to focus sound waves into your ear canal, so they travel to your eardrum. The sound waves make your eardrum vibrate. This vibration passes to your middle ear, which contains three small bones (ossicles) called the hammer, anvil and stirrup (named after their shapes). These strengthen the vibrations as they conduct them to your inner ear.
When we hear, sound travels into the ear and then the hearing nerves take the signals to the brain. The brain is then responsible for putting it all together and making sense of the sound. Because the ears don’t know what’s important and what’s not, they send a lot of information to the brain. This is too much information for us to process, so the brain filters out a lot of unnecessary ‘activity’ and background sound, such as clocks ticking or traffic noise.

Prolonged exposure to loud sounds is the most common cause of tinnitus. Up to 90% of people with tinnitus have some level of noise-induced hearing loss. The noise causes permanent damage to the sound-sensitive cells of the cochlea, a spiral-shaped organ in the inner ear. Carpenters, pilots, rock musicians, street-repair workers, and landscapers are among those whose jobs put them at risk, as are people who work with chain saws, guns, or other loud devices or who repeatedly listen to loud music. A single exposure to a sudden extremely loud noise can also cause tinnitus.
In cases of infection, antibiotics or antifungal medications are an option. Some conditions are amenable to surgical intervention such as middle ear fluid, cholesteatoma, and otosclerosis. If conductive hearing loss is due to head trauma, surgical repair is an option.[5] If absence or deformation of ear structures cannot be corrected, or if the patient declines surgery, hearing aids which amplify sounds are a possible treatment option.[2] Bone conduction hearing aids are useful as these deliver sound directly, through bone, to the cochlea or organ of hearing bypassing the pathology. These can be on a soft or hard headband or can be inserted surgically, a bone anchored hearing aid, of which there are several types. Conventional air conduction hearing aids can also be used.
▶ For most inner ear problems, a sodium-restricted, caffeine-free diet is recommended. Caffeine is a central nervous system stimulant and its intake makes the symptoms of inner ear disorder (especially headache and dizziness) appear more pronounced. Hence, it is advisable to reduce the intake of caffeine as much as possible till the condition is completely treated. Excess sugar in the diet also triggers dizziness.
Exposure to loud noise. Loud noises, such as those from heavy equipment, chain saws and firearms, are common sources of noise-related hearing loss. Portable music devices, such as MP3 players or iPods, also can cause noise-related hearing loss if played loudly for long periods. Tinnitus caused by short-term exposure, such as attending a loud concert, usually goes away; both short- and long-term exposure to loud sound can cause permanent damage.
Ototoxic drugs also may cause subjective tinnitus, as they may cause hearing loss, or increase the damage done by exposure to loud noise. Those damages may occur even at doses that are not considered ototoxic.[28] More than 260 medications have been reported to cause tinnitus as a side effect.[29] In many cases, however, no underlying cause could be identified.[2]
Muscle spasms: Tinnitus that is described as clicking may be due to abnormalities that cause the muscle in the roof of the mouth (palate) to go into spasm. This causes the Eustachian tube, which helps equalize pressure in the ears, to repeatedly open and close. Multiple sclerosis and other neurologic diseases that are associated with muscle spasms may also be a cause of tinnitus, as they may lead to spasms of certain muscles in the middle ear that can cause the repetitive clicking.
×